Magnetism in Everyday Technology: An Integrative Review of Principles, Devices, and Educational Implications

  • Elsiana Velsi Universitas Indraprasta PGRI
  • Tya Ratu Elizar Universitas Indraprasta PGRI
Keywords: Daily LifeEducation, Electromagnetism, Magnetism, Technology

Abstract

The advancement of science and technology has significantly transformed human life, and among the most essential phenomena underlying these developments is magnetism, which has long served as both a theoretical foundation and a practical enabler of innovation. This study employed a descriptive qualitative design through an extensive literature review of academic books, peer-reviewed journals, and reputable online resources to analyze the principles of magnetism and their applications in daily life. The findings reveal that magnetic fields are widely utilized in household devices such as refrigerators, electric bells, and loudspeakers, as well as in advanced technologies including electric motors, telecommunication systems, and medical imaging. The results further demonstrate that magnetism is not only central to technological innovation but also provides significant educational value by linking abstract concepts with real-world experiences, thereby enhancing conceptual understanding and student engagement. Comparative analysis with previous studies confirmed the reliability of these findings while highlighting the novelty of this research in synthesizing historical, theoretical, and practical dimensions into a single holistic narrative. The study implies that integrating magnetism into science curricula and leveraging its practical relevance can strengthen science literacy and foster innovation, while also underscoring the potential of magnet-based systems for advancing sustainable energy and engineering solutions.

Downloads

Download data is not yet available.

References

Alahmer, A., Al-Amayreh, M., Mostafa, A. O., Al-Dabbas, M., & Rezk, H. (2021). Magnetic Refrigeration Design Technologies: State of the Art and General Perspectives. Energies, 14(15), 4662. https://doi.org/10.3390/en14154662

Alamzadeh, I., Alexandropoulos, G. C., Shlezinger, N., & Imani, M. F. (2021). A reconfigurable intelligent surface with integrated sensing capability. Scientific Reports, 11(1), 20737. https://doi.org/10.1038/s41598-021-99722-x

Ali, E. M., Alibakhshikenari, M., Virdee, B. S., Soruri, M., & Limiti, E. (2021). Efficient Wireless Power Transfer via Magnetic Resonance Coupling Using Automated Impedance Matching Circuit. Electronics, 10(22), 2779. https://doi.org/10.3390/electronics10222779

Amineh, R. K. (2020). Applications of Electromagnetic Waves: Present and Future. Electronics, 9(5), 808. https://doi.org/10.3390/electronics9050808

Arnold, T. C., Freeman, C. W., Litt, B., & Stein, J. M. (2023). Low‐field MRI: Clinical promise and challenges. Journal of Magnetic Resonance Imaging, 57(1), 25-44. https://doi.org/10.1002/jmri.28408

Banda, H. J., & Nzabahimana, J. (2021). Effect of integrating physics education technology simulations on students' conceptual understanding in physics: A review of literature. Physical Review Physics Education Research, 17(2), 023108. https://doi.org/10.1103/PhysRevPhysEducRes.17.023108

de Vos, B., Parsa, J., Abdulrazaq, Z., Teeuwisse, W. M., Van Speybroeck, C. D. E., de Gans, D. H., Remis, R. F., O'Reilly, T., & Webb, A. G. (2021). Design, Characterisation and Performance of an Improved Portable and Sustainable Low-Field MRI System. Frontiers in Physics, 9. https://doi.org/10.3389/fphy.2021.701157

Duan, X., Zhang, X., Tang, Y., & Hao, M. (2021). Cogging Torque Reduction in PMSM in Wide Temperature Range by Response Surface Methodology. Symmetry, 13(10), 1877. https://doi.org/10.3390/sym13101877

Filanovich, A., & Povzner, A. (2021). Virtual Laboratories in Physics Education. The Physics Teacher, 59(8), 582-584. https://doi.org/10.1119/5.0038803

Gaeta, M., Cavallaro, M., Vinci, S. L., Mormina, E., Blandino, A., Marino, M. A., Granata, F., Tessitore, A., Galletta, K., D'Angelo, T., & Visalli, C. (2021). Magnetism of materials: theory and practice in magnetic resonance imaging. Insights into Imaging, 12(1), 179. https://doi.org/10.1186/s13244-021-01125-z

Heim, J. W., & Vander Wal, R. L. (2023). NdFeB Permanent Magnet Uses, Projected Growth Rates and Nd Plus Dy Demands across End-Use Sectors through 2050: A Review. Minerals, 13(10), 1274. https://doi.org/10.3390/min13101274

Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.-L., Diény, B., Pirro, P., & Hillebrands, B. (2020). Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509, 166711. https://doi.org/10.1016/j.jmmm.2020.166711

Hori, M., Hagiwara, A., Goto, M., Wada, A., & Aoki, S. (2021). Low-Field Magnetic Resonance Imaging. Investigative Radiology, 56(11), 669-679. https://doi.org/10.1097/RLI.0000000000000810

Kim, S., & You, Y. (2022). Optimization of a Permanent Magnet Synchronous Motor for e-Mobility Using Metamodels. Applied Sciences, 12(3), 1625. https://doi.org/10.3390/app12031625

Laha, A., Kalathy, A., Pahlevani, M., & Jain, P. (2023). A Comprehensive Review on Wireless Power Transfer Systems for Charging Portable Electronics. Eng, 4(2), 1023-1057. https://doi.org/10.3390/eng4020061

Li, L., & Yan, M. (2020). Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration. Journal of Alloys and Compounds, 823, 153810. https://doi.org/10.1016/j.jallcom.2020.153810

McCall, S. K., & Nlebedim, I. C. (2021). Advances in Processing, Manufacturing, and Applications of Magnetic Materials. JOM, 73(12), 3883-3884. https://doi.org/10.1007/s11837-021-04979-2

Megahed, A. A., Abdelhay, E. H., Abdelazim, M., & Soliman, H. Y. M. (2023). 5G millimeter wave wideband MIMO antenna arrays with high isolation. EURASIP Journal on Wireless Communications and Networking, 2023(1), 61. https://doi.org/10.1186/s13638-023-02267-y

Mociran, B., & Topa, V. (2023). The Optimization of the Interior Permanent Magnetic Motor Case Study. Electronics (Switzerland), 12(13). https://doi.org/10.3390/electronics12132982

Mörée, G., & Leijon, M. (2023). Review of Hysteresis Models for Magnetic Materials. Energies, 16(9), 3908. https://doi.org/10.3390/en16093908

Orosz, T., Pánek, D., & Kuczmann, M. (2023). Performance analysis of a robust design optimization of a solenoid with different sensitivity metrics. Journal of Computational and Applied Mathematics, 424, 115021. https://doi.org/10.1016/j.cam.2022.115021

Park, H. J., Kang, H. L., Ahn, D. G., & Han, S. H. (2023). Optimal Shape Design of Direct-Drive Permanent Magnet Generator for 1 kW-Class Wind Turbines. Applied Sciences, 13(10), 5856. https://doi.org/10.3390/app13105856

Renuka Balakrishna, A., & James, R. D. (2022). Design of soft magnetic materials. npj Computational Materials, 8(1), 4. https://doi.org/10.1038/s41524-021-00682-7

Rodriguez-Vargas, B. R., Stornelli, G., Folgarait, P., Ridolfi, M. R., Miranda Pérez, A. F., & Di Schino, A. (2023). Recent Advances in Additive Manufacturing of Soft Magnetic Materials: A Review. Materials, 16(16), 5610. https://doi.org/10.3390/ma16165610

Schmool, D. (2022). Recent Advances in Nanomagnetism. Magnetochemistry, 8(9), 110. https://doi.org/10.3390/magnetochemistry8090110

Sezer, N., Arı, İ., Biçer, Y., & Koç, M. (2021). Superparamagnetic nanoarchitectures: Multimodal functionalities and applications. Journal of Magnetism and Magnetic Materials, 538, 168300. https://doi.org/10.1016/j.jmmm.2021.168300

Silveyra, J. M., Ferrara, E., Huber, D. L., & Monson, T. C. (2018). Soft magnetic materials for a sustainable and electrified world. Science, 362(6413). https://doi.org/10.1126/science.aao0195

Sun, J. (2024). Development And Application of Magnetic Storage Technology. Highlights in Science, Engineering and Technology, 111, 167-173. https://doi.org/10.54097/mpny0v89

Ubaidillah, U., Lenggana, B. W., & Choi, S. B. (2022). Bibliometric Review of Magnetorheological Materials. Sustainability (Switzerland), 14(23). https://doi.org/10.3390/su142315816

Van den Beemt, A., Groothuijsen, S., Ozkan, L., & Hendrix, W. (2023). Remote labs in higher engineering education: engaging students with active learning pedagogy. Journal of Computing in Higher Education, 35(2), 320-340. https://doi.org/10.1007/s12528-022-09331-4

Wang, D., Zhang, J., Cui, S., Bie, Z., Song, K., Zhu, C., & Matveevich, M. I. (2022). Modern Advances in Magnetic Materials of Wireless Power Transfer Systems: A Review and New Perspectives. Nanomaterials, 12(20), 3662. https://doi.org/10.3390/nano12203662

Wei, X., Jin, M.-L., Yang, H., Wang, X.-X., Long, Y.-Z., & Chen, Z. (2022). Advances in 3D printing of magnetic materials: Fabrication, properties, and their applications. Journal of Advanced Ceramics, 11(5), 665-701. https://doi.org/10.1007/s40145-022-0567-5

Xiao, F., Xia, Y., Zhang, K., Li, H., Chen, K., & Li, P. (2022). Study on a small‐signal analysis method for PMSG considering LVRT control and frequency regulation. IET Generation, Transmission & Distribution, 16(11), 2154-2165. https://doi.org/10.1049/gtd2.12429

Yang, X., Cui, X., Bai, H., Kang, X., Li, C., Deng, H., Zheng, Z., Cui, W., Chen, L., & Tang, J. (2020). A new design of divided solenoid with high homogeneity based on linear programming. Review of Scientific Instruments, 91(1). https://doi.org/10.1063/1.5120419

Yee Heng, T., Jian Ding, T., Choe Wei Chang, C., Jian Ping, T., Choon Yian, H., & Dahari, M. (2022). Permanent Magnet Synchronous Generator design optimization for wind energy conversion system: A review. Energy Reports, 8, 277-282. https://doi.org/10.1016/j.egyr.2022.10.239

Published
2024-05-27
How to Cite
Elsiana Velsi, & Tya Ratu Elizar. (2024). Magnetism in Everyday Technology: An Integrative Review of Principles, Devices, and Educational Implications. ISEJ : Indonesian Science Education Journal, 5(2), 83-90. https://doi.org/10.62159/isej.v5i2.1766
Section
Articles